Three-Terminal Low Current Positive Voltage Regulators

The MC78L00A Series of positive voltage regulators are inexpensive, easy–to–use devices suitable for a multitude of applications that require a regulated supply of up to 100 mA. Like their higher powered MC7800 and MC78M00 Series cousins, these regulators feature internal current limiting and thermal shutdown making them remarkably rugged. No external components are required with the MC78L00 devices in many applications.

These devices offer a substantial performance advantage over the traditional zener diode–resistor combination, as output impedance and quiescent current are substantially reduced.

- Wide Range of Available, Fixed Output Voltages
- Low Cost
- Internal Short Circuit Current Limiting
- Internal Thermal Overload Protection
- No External Components Required
- Complementary Negative Regulators Offered (MC79L00A Series)

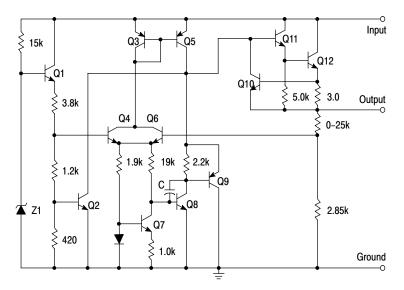


Figure 1. Representative Schematic Diagram

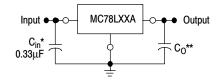


Figure 2. Standard Application

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V above the output voltage even during the low point on the input ripple voltage.

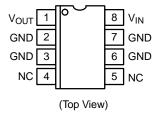
- *C_{in} is required if regulator is located an appreciable distance from power supply filter.
- ** C_O is not needed for stability; however, it does improve transient response.

ON Semiconductor™

http://onsemi.com

P SUFFIX CASE 029

TO-92


Pin: 1. Output 2. Ground 3. Input

SOP-8* D SUFFIX CASE 751

*SOP-8 is an internally modified SO-8 package. Pins 2, 3, 6, and 7 are electrically common to the die attach flag. This internal lead frame modification decreases package thermal resistance and increases power dissipation capability when appropriately mounted on a printed circuit board. SOP-8 conforms to all external dimensions of the standard SO-8 package.

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 10 of this data sheet.

MAXIMUM RATINGS ($T_A = +125^{\circ}C$, unless otherwise noted.)

Rating	Symbol	Value	Unit
Input Voltage (2.6 V-8.0 V) (12 V-18 V) (24 V)	VI	30 35 40	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Operating Junction Temperature Range	TJ	0 to +150	°C

ELECTRICAL CHARACTERISTICS (V_I = 10 V, I_O = 40 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, -40° C < T_J < +125 $^{\circ}$ C (for MC78LXXAB), 0° C < T_J < +125 $^{\circ}$ C (for MC78LXXAC), unless otherwise noted.)

		MC78L05AC, AB			
Characteristics	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	Vo	4.8	5.0	5.2	Vdc
Line Regulation $(T_J = +25^{\circ}C, I_O = 40 \text{ mA})$	Reg _{line}				mV
7.0 $Vdc \le V_1 \le 20 \ Vdc$ 8.0 $Vdc \le V_1 \le 20 \ Vdc$		- -	55 45	150 100	
Load Regulation $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 100 \text{ mA})$ $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 40 \text{ mA})$	Reg _{load}	_ _	11 5.0	60 30	mV
Output Voltage $(7.0 \text{ Vdc} \le \text{V}_{\text{I}} \le 20 \text{ Vdc}, 1.0 \text{ mA} \le \text{I}_{\text{O}} \le 40 \text{ mA})$ $(\text{V}_{\text{I}} = 10 \text{ V}, 1.0 \text{ mA} \le \text{I}_{\text{O}} \le 70 \text{ mA})$	Vo	4.75 4.75	_ _	5.25 5.25	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	l _{IB}	- -	3.8	6.0 5.5	mA
Input Bias Current Change (8.0 Vdc \leq V _I \leq 20 Vdc) (1.0 mA \leq I _O \leq 40 mA)	$\Delta l_{ m IB}$	_ _	_ _	1.5 0.1	mA
Output Noise Voltage $(T_A = +25^{\circ}C, 10 \text{ Hz} \le f \le 100 \text{ kHz})$	V _n	-	40	-	μV
Ripple Rejection ($I_O = 40 \text{ mA}$, $f = 120 \text{ Hz}$, $8.0 \text{ Vdc} \le V_I \le 18 \text{ V}$, $T_J = +25^{\circ}\text{C}$)	RR	41	49	-	dB
Dropout Voltage (T _J = +25°C)	$V_I - V_O$	_	1.7	_	Vdc

ELECTRICAL CHARACTERISTICS (V_I = 14 V, I_O = 40 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, -40° C < T_J < +125 $^{\circ}$ C (for MC78LXXAB), 0 $^{\circ}$ C < T_J < +125 $^{\circ}$ C (for MC78LXXAC), unless otherwise noted.)

		М	C78L08AC,	AB	
Characteristics	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	Vo	7.7	8.0	8.3	Vdc
Line Regulation $(T_J = +25^{\circ}C, I_O = 40 \text{ mA})$	Reg _{line}				mV
10.5 $Vdc \le V_1 \le 23 Vdc$ 11 $Vdc \le V_1 \le 23 Vdc$		_ _	20 12	175 125	
Load Regulation $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 100 \text{ mA})$ $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 40 \text{ mA})$	Reg _{load}	_ _	15 8.0	80 40	mV
Output Voltage $(10.5 \text{ Vdc} \le \text{V}_1 \le 23 \text{ Vdc}, 1.0 \text{ mA} \le \text{I}_O \le 40 \text{ mA})$ $(\text{V}_1 = 14 \text{ V}, 1.0 \text{ mA} \le \text{I}_O \le 70 \text{ mA})$	Vo	7.6 7.6	_ _	8.4 8.4	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	I _{IB}	_ _	3.0	6.0 5.5	mA
Input Bias Current Change (11 Vdc \leq V _I \leq 23 Vdc) (1.0 mA \leq I _O \leq 40 mA)	Δl _{IB}	- -	_ _	1.5 0.1	mA
Output Noise Voltage $(T_A = +25^{\circ}C, 10 \text{ Hz} \le f \le 100 \text{ kHz})$	V _n	_	60	_	μV
Ripple Rejection (I_O = 40 mA, f = 120 Hz, 12 V \leq V _I \leq 23 V, T _J = +25°C)	RR	37	57	-	dB
Dropout Voltage (T _J = +25°C)	$V_I - V_O$	-	1.7	=	Vdc

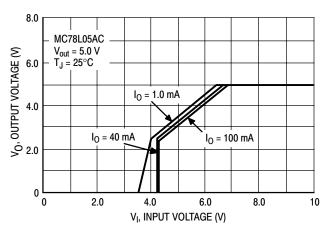
ELECTRICAL CHARACTERISTICS (V_I = 15 V, I_O = 40 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, -40°C < T_J < +125°C (for MC78LXXAB), 0°C < T_J < +125°C (for MC78LXXAC), unless otherwise noted.)

		MC78L09AC, AB			
Characteristics	Symbol	Min Typ		Max	Unit
Output Voltage ($T_J = +25^{\circ}C$)	Vo	8.6	9.0	9.4	Vdc
Line Regulation $(T_J = +25^{\circ}C, I_O = 40 \text{ mA})$ 11.5 Vdc $\leq V_I \leq 24 \text{ Vdc}$	Reg _{line}	_	20	175	mV
12 $Vdc \le V_1 \le 24 Vdc$		-	12	125	
Load Regulation $ (T_J = +25^{\circ}C, \ 1.0 \ \text{mA} \le I_O \le 100 \ \text{mA}) \\ (T_J = +25^{\circ}C, \ 1.0 \ \text{mA} \le I_O \le 40 \ \text{mA}) $	Reg _{load}	- -	15 8.0	90 40	mV
Output Voltage $(11.5 \text{ Vdc} \leq \text{V}_{\text{I}} \leq 24 \text{ Vdc}, \ 1.0 \text{ mA} \leq \text{I}_{\text{O}} \leq 40 \text{ mA})$ $(\text{V}_{\text{I}} = 15 \text{ V}, \ 1.0 \text{ mA} \leq \text{I}_{\text{O}} \leq 70 \text{ mA})$	Vo	8.5 8.5	- -	9.5 9.5	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	I _{IB}	_ _	3.0	6.0 5.5	mA
Input Bias Current Change (11 Vdc \leq V _I \leq 23 Vdc) (1.0 mA \leq I _O \leq 40 mA)	ΔI _{IB}	_ _	_ _	1.5 0.1	mA
Output Noise Voltage $(T_A = +25^{\circ}C, 10 \text{ Hz} \le f \le 100 \text{ kHz})$	V _n	_	60	-	μV
Ripple Rejection ($I_O = 40 \text{ mA}$, f = 120 Hz, 13 V \leq V $_I \leq$ 24 V, $T_J = +25^{\circ}\text{C}$)	RR	37	57	-	dB
Dropout Voltage $(T_J = +25^{\circ}C)$	$V_I - V_O$	-	1.7	-	Vdc

ELECTRICAL CHARACTERISTICS (V_I = 19 V, I_O = 40 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, -40° C < T_J < +125 $^{\circ}$ C (for MC78LXXAB), 0 $^{\circ}$ C < T_J < +125 $^{\circ}$ C (for MC78LXXAC), unless otherwise noted.)

		М	C78L12AC,	AB	
Characteristics	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	Vo	11.5	12	12.5	Vdc
Line Regulation $(T_J = +25^{\circ}C, I_O = 40 \text{ mA})$	Reg _{line}		400	050	mV
14.5 $Vdc \le V_1 \le 27 Vdc$ 16 $Vdc \le V_1 \le 27 Vdc$		_	120 100	250 200	
Load Regulation $ (T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 100 \text{ mA}) $ $ (T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 40 \text{ mA}) $	Reg _{load}	- -	20 10	100 50	mV
Output Voltage $(14.5 \text{ Vdc} \leq \text{V}_{\text{I}} \leq 27 \text{ Vdc}, \ 1.0 \text{ mA} \leq \text{I}_{\text{O}} \leq 40 \text{ mA}) \\ (\text{V}_{\text{I}} = 19 \text{ V}, \ 1.0 \text{ mA} \leq \text{I}_{\text{O}} \leq 70 \text{ mA})$	Vo	11.4 11.4	_ _	12.6 12.6	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	I _{IB}	- -	4.2 _	6.5 6.0	mA
Input Bias Current Change (16 Vdc \leq V _I \leq 27 Vdc) (1.0 mA \leq I _O \leq 40 mA)	Δl _{IB}	- -	_ _	1.5 0.1	mA
Output Noise Voltage $(T_A = +25^{\circ}C, 10 \text{ Hz} \le f \le 100 \text{ kHz})$	V _n	-	80	-	μV
Ripple Rejection ($I_O = 40$ mA, f = 120 Hz, 15 V \leq V _I \leq 25 V, T _J = +25°C)	RR	37	42	-	dB
Dropout Voltage (T _J = +25°C)	$V_I - V_O$	-	1.7	-	Vdc

ELECTRICAL CHARACTERISTICS (V_I = 23 V, I_O = 40 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, -40°C < T_J < +125°C (for MC78LXXAB), 0°C < T_J < +125°C (for MC78LXXAC), unless otherwise noted.)


		MC78L15AC, AB			
Characteristics	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	Vo	14.4	15	15.6	Vdc
Line Regulation $ (T_J = +25^{\circ}\text{C}, I_O = 40 \text{ mA}) $ $ 17.5 \text{ Vdc} \leq V_I \leq 30 \text{ Vdc} $ $ 20 \text{ Vdc} \leq V_I \leq 30 \text{ Vdc} $	Reg _{line}		130 110	300 250	mV
Load Regulation $ (T_J = +25^{\circ}\text{C}, \ 1.0 \ \text{mA} \leq I_O \leq 100 \ \text{mA}) $ $ (T_J = +25^{\circ}\text{C}, \ 1.0 \ \text{mA} \leq I_O \leq 40 \ \text{mA}) $	Reg _{load}		25 12	150 75	mV
Output Voltage $(17.5 \text{ Vdc} \le \text{V}_1 \le 30 \text{ Vdc}, 1.0 \text{ mA} \le \text{I}_O \le 40 \text{ mA})$ $(\text{V}_1 = 23 \text{ V}, 1.0 \text{ mA} \le \text{I}_O \le 70 \text{ mA})$	Vo	14.25 14.25	- -	15.75 15.75	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	I _{IB}		4.4 _	6.5 6.0	mA
Input Bias Current Change (20 Vdc \leq V _I \leq 30 Vdc) (1.0 mA \leq I _O \leq 40 mA)	Δl _{IB}	_ _	_ _	1.5 0.1	mA
Output Noise Voltage $(T_A = +25^{\circ}C, 10 \text{ Hz} \le f \le 100 \text{ kHz})$	V _n	_	90	-	μV
Ripple Rejection ($I_O = 40 \text{ mA}$, f = 120 Hz, 18.5 V \leq V _I \leq 28.5 V, T _J = +25°C)	RR	34	39	-	dB
Dropout Voltage (T _J = +25°C)	V _I – V _O	-	1.7	-	Vdc

$\textbf{ELECTRICAL CHARACTERISTICS} \ (V_I = 27 \ V, \ I_O = 40 \ \text{mA}, \ C_I = 0.33 \ \mu\text{F}, \ C_O = 0.1 \ \mu\text{F}, \ 0^{\circ}\text{C} < \text{T}_J < +125^{\circ}\text{C}, \ unless \ otherwise \ noted.)$

		MC78L18AC			
Characteristics	Symbol	Min	Тур	Max	Unit
Output Voltage ($T_J = +25^{\circ}C$)	Vo	17.3	18	18.7	Vdc
Line Regulation $ (T_J = +25^{\circ}\text{C}, \ I_O = 40 \text{ mA}) $ 21.4 $\text{Vdc} \leq \text{V}_I \leq 33 \text{ Vdc} $ 20.7 $\text{Vdc} \leq \text{V}_I \leq 33 \text{ Vdc} $ 22 $\text{Vdc} \leq \text{V}_I \leq 33 \text{ Vdc} $ 21 $\text{Vdc} \leq \text{V}_I \leq 33 \text{ Vdc} $ 21 $\text{Vdc} \leq \text{V}_I \leq 33 \text{ Vdc} $	Reg _{line}	-	45 35	325 275	mV
Load Regulation $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 100 \text{ mA})$ $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 40 \text{ mA})$	Reg _{load}	_ _	30 15	170 85	mV
Output Voltage $ (21.4 \text{ Vdc} \le V_I \le 33 \text{ Vdc}, \ 1.0 \text{ mA} \le I_O \le 40 \text{ mA}) $ $ (20.7 \text{ Vdc} \le V_I \le 33 \text{ Vdc}, \ 1.0 \text{ mA} \le I_O \le 40 \text{ mA}) $ $ (V_I = 27 \text{ V}, \ 1.0 \text{ mA} \le I_O \le 70 \text{ mA}) $ $ (V_I = 27 \text{ V}, \ 1.0 \text{ mA} \le I_O \le 70 \text{ mA}) $	Vo	17.1 17.1	-	18.9 18.9	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	I _{IB}	_ _	3.1 -	6.5 6.0	mA
Input Bias Current Change (22 Vdc \leq V $_{I}$ \leq 33 Vdc) (21 Vdc \leq V $_{I}$ \leq 33 Vdc) (1.0 mA \leq I $_{O}$ \leq 40 mA)	Δl _{IB}	_ _	_ _	1.5 0.1	mA
Output Noise Voltage $(T_A = +25^{\circ}C, 10 \text{ Hz} \le f \le 100 \text{ kHz})$	V _n	_	150	_	μV
Ripple Rejection (I_O = 40 mA, f = 120 Hz, 23 V \leq V _I \leq 33 V, T _J = +25°C)	RR	33	48	-	dB
Dropout Voltage (T _J = +25°C)	$V_I - V_O$	-	1.7	_	Vdc

ELECTRICAL CHARACTERISTICS ($V_1 = 33 \text{ V}, I_O = 40 \text{ mA}, C_1 = 0.33 \text{ µF}, C_O = 0.1 \text{ µF}, 0^{\circ}\text{C} < T_J < +125^{\circ}\text{C}$, unless otherwise noted.)

		MC78L24AC			
Characteristics	Symbol	Min	Тур	Max	Unit
Output Voltage $(T_J = +25^{\circ}C)$	Vo	23	24	25	Vdc
Line Regulation $(T_J = +25^{\circ}C, I_O = 40 \text{ mA})$ $27.5 \text{ Vdc} \le V_I \le 38 \text{ Vdc}$	Reg _{line}	_	_	_	mV
28 $\forall dc \le V_1 \le 80 \ \forall dc$ 27 $\forall dc \le V_1 \le 80 \ \forall dc$		_ _ _	50 60	300 350	
Load Regulation $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 100 \text{ mA})$ $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 40 \text{ mA})$	Reg _{load}	_ _	40 20	200 100	mV
Output Voltage $ (28 \text{ Vdc} \leq \text{V}_{I} \leq 38 \text{ Vdc}, \ 1.0 \text{ mA} \leq \text{I}_{O} \leq 40 \text{ mA}) \\ (27 \text{ Vdc} \leq \text{V}_{I} \leq 38 \text{ Vdc}, \ 1.0 \text{ mA} \leq \text{I}_{O} \leq 40 \text{ mA}) \\ (28 \text{ Vdc} \leq \text{V}_{I} \leq 33 \text{ Vdc}, \ 1.0 \text{ mA} \leq \text{I}_{O} \leq 70 \text{ mA}) \\ (27 \text{ Vdc} \leq \text{V}_{I} \leq 33 \text{ Vdc}, \ 1.0 \text{ mA} \leq \text{I}_{O} \leq 70 \text{ mA}) \\ \end{aligned} $	Vo	22.8 22.8	-	25.2 25.2	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	I _{IB}	_ _	3.1	6.5 6.0	mA
Input Bias Current Change (28 Vdc \leq V ₁ \leq 38 Vdc) (1.0 mA \leq I _O \leq 40 mA)	Δl_{IB}	_ _	- -	1.5 0.1	mA
Output Noise Voltage $(T_A = +25^{\circ}C, 10 \text{ Hz} \le f \le 100 \text{ kHz})$	V _n	_	200	_	μV
Ripple Rejection ($I_O = 40 \text{ mA}$, f = 120 Hz, 29 V \leq V _I \leq 35 V, T _J = +25°C)	RR	31	45	_	dB
Dropout Voltage $(T_J = +25^{\circ}C)$	V _I – V _O	_	1.7	-	Vdc

Figure 1. Dropout Characteristics

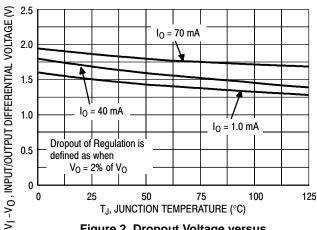


Figure 2. Dropout Voltage versus Junction Temperature

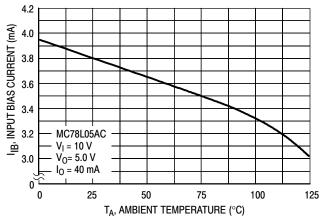


Figure 3. Input Bias Current versus Ambient Temperature

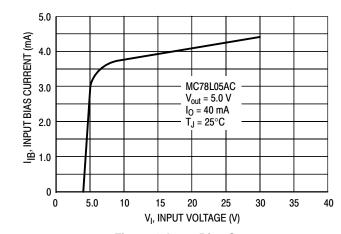


Figure 4. Input Bias Current versus Input Voltage

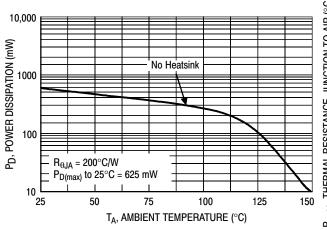
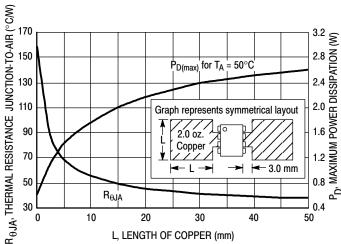
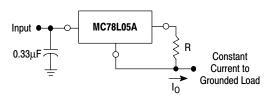


Figure 5. Maximum Average Power Dissipation versus Ambient Temperature – TO–92 Type Package




Figure 6. SOP-8 Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length

APPLICATIONS INFORMATION

Design Considerations

The MC78L00A Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition. Internal Short Circuit Protection limits the maximum current the circuit will pass.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. The

The MC78L00 regulators can also be used as a current source when connected as above. In order to minimize dissipation the MC78L05C is chosen in this application. Resistor R determines the current as follows:

$$I_0 = \frac{5.0 \text{ V}}{\text{B}} + I_{\text{B}}$$

I_{IB} = 3.8 mA over line and load changes

For example, a 100 mA current source would require R to be a 50 Ω , 1/2 W resistor and the output voltage compliance would be the input voltage less 7 V.

Figure 7. Current Regulator

input bypass capacitor should be selected to provide good high–frequency characteristics to insure stable operation under all load conditions. A 0.33 μF or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead. Bypassing the output is also recommended.

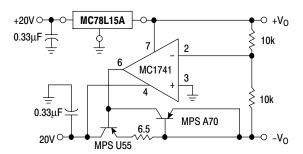


Figure 8. ± 15 V Tracking Voltage Regulator

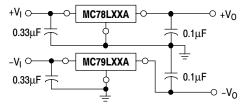
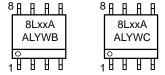


Figure 9. Positive and Negative Regulator

ORDERING INFORMATION

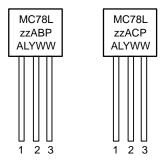

Device	Output Voltage	Operating Temperature Range	Package	Shipping
MC78L05ABD			SOP-8	98 Units/Rail
MC78L05ABDR2			SOP-8	2500 Tape & Reel
MC78L05ABP		T 400 4 40500	TO-92	2000 Units/Bag
MC78L05ABPRA		$T_J = -40^{\circ} \text{ to } +125^{\circ}\text{C}$	TO-92	2000 Tape & Reel
MC78L05ABPRE			TO-92	2000 Units/Bag
MC78L05ABPRM			TO-92	2000 Ammo Pack
MC78L05ACD	5.0 V		SOP-8	98 Units/Rail
MC78L05ACDR2			SOP-8	2500 Tape & Reel
MC78L05ACP			TO-92	2000 Units/Bag
MC78L05ACPRA		$T_J = 0^{\circ} \text{ to } +125^{\circ}\text{C}$	TO-92	2000 Tape & Reel
MC78L05ACPRE			TO-92	2000 Tape & Reel
MC78L05ACPRM			TO-92	2000 Ammo Pack
MC78L05ACPRP			TO-92	2000 Ammo Pack
MC78L08ABD			SOP-8	98 Units/Rail
MC78L08ABDR2		$T_{J} = -40^{\circ} \text{ to } +125^{\circ}\text{C}$	SOP-8	2500 Tape & Reel
MC78L08ABP			TO-92	2000 Units/Bag
MC78L08ABPRA			TO-92	2000 Tape & Reel
MC78L08ABPRP			TO-92	2000 Units/Bag
MC78L08ACD	8.0 V		SOP-8	98 Units/Rail
MC78L08ACDR2			SOP-8	2500 Tape & Reel
MC78L08ACP		T 004 40500	TO-92	2000 Units/Bag
MC78L08ACPRA		$T_J = 0^{\circ} \text{ to } +125^{\circ}\text{C}$	TO-92	2000 Tape & Reel
MC78L08ACPRE			TO-92	2000 Tape & Reel
MC78L08ACPRP			TO-92	2000 Ammo Pack
MC78L09ABD			SOP-8	98 Units/Rail
MC78L09ABDR2		T 4004 40563	SOP-8	2500 Tape & Reel
MC78L09ABPRA		$T_J = -40^{\circ} \text{ to } +125^{\circ}\text{C}$	TO-92	2000 Units/Bag
MC78L09ABPRP	9.0 V		TO-92	2000 Units/Bag
MC78L09ACD			SOP-8	98 Units/Rail
MC78L09ACDR2		$T_{J} = 0^{\circ} \text{ to } +125^{\circ}\text{C}$	SOP-8	2500 Tape & Reel
MC78L09ACP			TO-92	2000 Units/Bag

ORDERING INFORMATION (continued)

Device	Output Voltage	Operating Temperature Range	Package	Shipping
MC78L12ABD			SOP-8	98 Units/Rail
MC78L12ABDR2			SOP-8	2500 Tape & Reel
MC78L12ABP		$T_J = -40^{\circ} \text{ to } +125^{\circ}\text{C}$	TO-92	2000 Units/Bag
MC78L12ABPRP			TO-92	2000 Units/Bag
MC78L12ACD			SOP-8	98 Units/Rail
MC78L12ACDR2	12 V		SOP-8	2500 Tape & Reel
MC78L12ACP			TO-92	2000 Units/Bag
MC78L12ACPRA		$T_J = 0^{\circ} \text{ to } +125^{\circ}\text{C}$	TO-92	2000 Tape & Reel
MC78L12ACPRE			TO-92	2000 Tape & Reel
MC78L12ACPRM			TO-92	2000 Ammo Pack
MC78L12ACPRP			TO-92	2000 Ammo Pack
MC78L15ABD			SOP-8	98 Units/Rail
MC78L15ABDR2			SOP-8	2500 Tape & Reel
MC78L15ABP		$T_{J} = -40^{\circ} \text{ to } +125^{\circ}\text{C}$	TO-92	2000 Units/Bag
MC78L15ABPRA			TO-92	2000 Tape & Reel
MC78L15ABPRP			TO-92	2000 Units/Bag
MC78L15ACD	15 V		SOP-8	98 Units/Rail
MC78L15ACDR2			SOP-8	2500 Tape & Reel
MC78L15ACP		$T_{J} = 0^{\circ} \text{ to } +125^{\circ}\text{C}$	TO-92	2000 Units/Bag
MC78L15ACPRA			TO-92	2000 Tape & Reel
MC78L15ACPRP			TO-92	2000 Ammo Pack
MC78L18ABP		$T_{J} = -40^{\circ} \text{ to } +125^{\circ}\text{C}$	TO-92	2000 Units/Bag
MC78L18ACP			TO-92	2000 Units/Bag
MC78L18ACPRA	18 V		TO-92	2000 Tape & Reel
MC78L18ACPRM		$T_J = 0^\circ \text{ to } +125^\circ \text{C}$	TO-92	2000 Units/Bag
MC78L18ACPRP			TO-92	2000 Ammo Pack
MC78L24ABP		$T_J = -40^{\circ} \text{ to } +125^{\circ}\text{C}$	TO-92	2000 Units/Bag
MC78L24ACP			TO-92	2000 Units/Bag
MC78L24ACPRA	24 V	$T_{J} = 0^{\circ} \text{ to } +125^{\circ}\text{C}$	TO-92	2000 Tape & Reel
MC78L24ACPRP			TO-92	2000 Ammo Pack

MARKING DIAGRAMS

SOP-8 D SUFFIX CASE 751

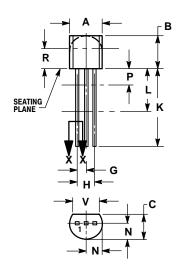


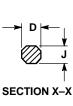
xx = 05, 08, 09, 12, or 15 A = Assembly Location

L = Wafer Lot Y = Year W = Work Week

B, C = Temperature Range

TO-92 P SUFFIX CASE 029

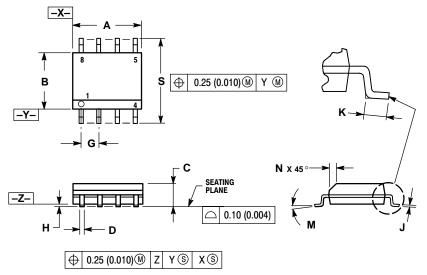

zz = 05, 08, 09, 12, 15, 18 or 24


A = Assembly Location

L = Wafer Lot Y = Year WW = Work Week

PACKAGE DIMENSIONS

TO-92 **P SUFFIX** CASE 29-11 **ISSUE AL**



NOTES:

- NOTES:
 1 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. CONTROLL OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
- LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.45	5.20
В	0.170	0.210	4.32	5.33
C	0.125	0.165	3.18	4.19
D	0.016	0.021	0.407	0.533
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
J	0.015	0.020	0.39	0.50
K	0.500		12.70	
L	0.250		6.35	
N	0.080	0.105	2.04	2.66
P	-	0.100		2.54
R	0.115		2.93	
٧	0.135		3.43	

SOP-8 **D SUFFIX** CASE 751-07 **ISSUE W**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
- 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
- SIDE.

 DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	4.80	5.00	0.189	0.197	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.053	0.069	
D	0.33	0.51	0.013	0.020	
G	1.27	7 BSC	0.050 BSC		
Н	0.10	0.25	0.004	0.010	
J	0.19	0.25	0.007	0.010	
K	0.40	1.27	0.016	0.050	
M	0 °	8 °	0 °	8 °	
N	0.25	0.50	0.010	0.020	
S	5.80	6.20	0.228	0.244	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031

Phone: 81–3–5740–2700 **Email**: r14525@onsemi.com

 $\textbf{ON Semiconductor Website}: \ \text{http://onsemi.com}$

For additional information, please contact your local

Sales Representative.